
Condenser Performance: Sound Pressure

	Sound Pressure (dBA @ 10 ft)				
Model	At 30% Speed	At 50% Speed	At 70% Speed	At 100% Speed	
NR*D02A014	44.3	50.6	57.6	66.5	
NR*D04A027	47.3	53.7	60.6	69.5	
NR*D06A041	49.1	55.4	62.4	71.3	
NR*D08A054	50.3	56.7	63.6	72.5	

 $^{*} = G$ for VSEC, J for AC

Sound Comparison Chart

Source: http://www.sengpielaudio.com/tableofsoundpressurelevels.htm > Adjusted to 10ft

Table 7-44. VELOCITY OF SOUND IN BAR-SHAPED SOLIDS*

Longitudinal Direction

	Velocity ^a			Velocity ^a	
Material	m/s f/s		Material	m/s	f/s
letals:			Crystals:		
Aluminum	5,240	17,200	Quartz X-cut	5,440	17,850
Antimony	3,400	11,200	Ammonium dihydrogen phosphate		
Bismuth	1,790	5,880	$(NH_4H_2PO_4)$ 45° Z-cut	3,280	10,770
Brass	3,420	11,200	Rochelle salt (sodium potassium		
Cadmium	2,400	7,880	tartrate, $KNaC_4H_4O_6\cdot 4H_2O$)		
Constantan	4,300	14,100	45° Y-cut	2,470	8,100
Copper	3,580	11,750	Calcium fluoride (CaF ₂ , fluorite) X-cut	6,740	22,100
German silver	3,580	11,750	Sodium chloride (NaCl, rock salt) X-cut	4,510	14,800
Gold	2,030	6,650	Sodium bromide (NaBr) X-cut	2,790	9,150
Iridium	4,790	15,700	Potassium chloride (KCl, sylvite) X-cut	4,140	13,600
Iron	5,170	16,950	Potassium bromide (KBr) X-cut	3,380	11,100
Lead	1,250	4,100	Glasses:		>
Magnesium	4,900	16,100	Heavy flint	3,490	11,440
Manganese	3,830	12,570	Extra-light flint	4,550	14,930
Nickel	4,760	15,620	Crown	5,300	17,400
Platinum	2,800	9,200	Heaviest crown	4,710	15,440
Silver	2,640	8,550	Quartz	5,370	17,600
Steel	5,050	16,600	Granite	3,950	12,970
Tantalum	3,350	11,000	Ivorý	3,010	9,880
Tin	2,730	8,950	Marble	3,810	12,500
Tungsten	4,310	14,150	Slate	4,510	14,800
Zinc	3,810	12,500	Woods: Elm	1,010	3,320
Cork	500	1,640	Oak	4,100	13,480

"Sound velocities in bulk material are somewhat higher (see Table 7-43).

*Data from: "Wavelengths of Sound", B.W. Henvis, Electronics, 20:134-136, March 1947; copyright McGraw-Hill, Inc., 1947.

Table 7-45. TYPICAL SOUND PRESSURE LEVELS

Measurements by Standard Noise Meter

Sound Relative level, db sound power		Typical location or source	
10	0.001	Soundproof vault; threshold of audibility	
20	0.01	Whisper or rustle; sound picture studio	
25		Broadcast studio; church; very quiet office or study	
30	0.10	Country residence: empty concert hall	
35		Drama theater; sleeping area; large table conference room; voice range 10-30 ft	
40	1.00	Private office; library; movie theater; hospital	
45		Classroom; auditorium; conference room	
50	10	Average office; hotel lobby; bank	
55		Department store; laboratory	
60	100	Busy dining room, kitchen; very noisy office; telephone use difficult	
65		Typing and accounting office	
70	1,000	City street; automobile	
75		Busy machine shop; raised voice necessary for communication at 2 ft; telephone use unsatisfactory	
80	10,000	Motor bus; noisy factory	
85		Vehicular tunnel; voice communication nearly impossible	
90	100,000	Superhighway; New York subway	
95		Large motor trucks	
100	1,000,000	Busy woodworking stop	
110	10,000,000	Riveting shop	
120	100,000,000	Propeller plane take off; thunder	
130	1,000,000,000	Jet plane at 100 ft; space rocket, 1 mile; 1-minute hearing damage; pain—use earplugs	

Table 7-46. COMPARING OR ADDING NOISE LEVELS*

For data on decibel conversion, see Table 8-24.

While it is possible to indicate an absolute level of sound energy in watts, or sound pressure in microbars, all practical measurements are comparative. Sound levels and ear response cover such a great range that it is convenient to use a logarithmic scale, using a dimensionless unit, the *bel.^a* In terms of power, the bel is defined as the logarithm to the base 10 of the ratio of W (the sound power in question) to W_o (a reference level of sound power), i.e.,

power level in bels = $\log_{10} (W/W_o)$.

The decibel (one-tenth of a bel) is the preferred unit:

power level in decibels = $10 \log_{10} (W/W_o)$.

As sound pressure is usually proportional to the square root of the sound power, the sound pressure level is commonly expressed as:^b

pressure level in decibels = $20 \log_{10} (P/P_o)$.

The reference levels most widely used correspond roughly to the threshold of audibility for the average human ear:^c

$$W_o = 10^{-12}$$
 watts; $P_o = 0.0002$ microbars.⁶

Unless otherwise stated, all values are rms (effective) quantities.^e

The human ear will not ordinarily detect sound-level differences of less than one decibel; thus, engineers usually prefer to express noise levels to the nearest decibel or half decibel.

Comparing two sound measurements f as a positive decibel difference, the pressure ratio and the power ratio may be computed from the previously discussed relationships. It is convenient to show these ratios in tabular form.

ADDITION OF TWO SOUND-METER MEASUREMENTS

When two noise sources operate simultaneously but have been separately evaluated, the cumulative noise level may be obtained readily from the power levels. Usually it is desired to find how much a noise source raises the decibel level above the level existing before it became operative. A direct answer, without the need for finding the energy ratios, may be obtained from the following table. Using the difference between the two previous sound-meter measurements, find the increment to be added to the higher reading.

Difference, db	Increment, db	Difference, db	Increment, db	Difference, db	Increment, db
0.0	3.0	5.5	1.1	10.5	0.4
0.5	2.8	6.0	1.0	11.0	0.3
1.0	2.6	6.5	0.9	11.5	0.3
1.5	2.4	7.0	0.8	12.0	0.3
2.0	2.2	7.5	0.7	12.5	0.2
2.5	1.9	8.0	0.6	13.0	0.2
3.0	1.7	8.5	0.6	13.5	0.2
3.5	1.6	9.0	0.5	14.0	0.2
4.0	1.4	9.5	0.5	14.5	0.2
4.5	1.3	10.0	0.4	15.0	0.1
5.0	1.2				

^aA scale based on Naperian logarithms is used in certain rare cases; the unit is then designated as the *neper*. ^bIn some sound fields the sound pressure is *not* proportional to the square root/of the sound power.

¹In some sound neids the sound pressure is *not* proportional to the square root/of the sound ^oOther reference levels, used in certain cases, are $W_a = 10^{-13}$ watts and $P_a = 1$ microbar.

^dA microbar is 0.1 newton per square meter (N/m²) or 1.0 dyne per square cm (dyn/cm²). One atmosphere is 1013 250 microbars, or 101 325 N/m².

"The tabular values apply to any two sound meter readings taken with the same response network, i.e., A(40), B(70), or C(flat), or to any single reading (giving ratios above the reference levels).

¹Each measurement may be the result of many observations, as the measurement of noise levels as specified in the applicable test codes almost always involves multiple readings. Accurate results depend also on the character of the room. Completely reflecting (reverberant) or completely absorbing (anechoic) rooms are unusual in field testing.

*Compiled and computed.